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Abstract—An elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces is de-
veloped on the basis of soil behavior observed in laboratory tests. This theory is applicable to general
three-dimensional stress conditions, but the parameters required to characterize the soil behavior can be
derived entirely from results of isotropic compression and conventional drained triaxial compression tests.
The theory is shown to predict soil behavior under various loading conditions with good accuracy. Of
special interest is its capability of predicting soil bebavior under drained as well as undrained conditions
over a range of confining pressures where the behavior changes from that typical of dense sand to that
typical of foose sand. Work-hardening as well as work-softening is incorporated in the theory.

I. INTRODUCTION

The elasto-plastic stress-strain theory previously developed for cohesionless soils{1, 2] reflects
many of the characteristics of sand behavior observed in laboratory tests. Results of cubical
triaxial tests on cohesionless soilfl,3] and concepts from elasticity and plasticity were em-
ployed in formulating the theory, which incorporates a yield criterion, a non-associated flow
rule, and an empirical work-hardening law.

This stress-strain theory is applicable to general three-dimensional conditions, but the values
of the nine soil parameters required to characterize the soil behavior can be derived entirely
from the results of conventional triaxial compression tests. Several essential aspects of the
behavior of cohesionless soil observed in experimental investigations are modeled by the
theory: nonlinearity, the influence of o, stress-path dependency, shear-dilatancy effects, and
coincidence of strain increment and stress increment axes at low stress levels with transition to
coincidence of strain increment and stress axes at high stress levels. Results of cubical triaxial
tests, torsion shear tests, and tests performed using various stress-paths were analyzed using
this theory, and it was found that the stress-strain and strength characteristics observed in these
tests were predicted with reasonable accuracy([1,2, 4.

Involved in this theory are some simplifying assumptions, which result in limitations in its
capabilities in some respects. Thus, only elastic strains are predicted for proportional
loading[4], whereas laboratory tests show that proportional loading with increasing stresses
causes some plastic deformation. Experiments show that failure envelopes for sands most often
are curved in the Mohr diagram, whereas they are assumed to be straight in the previous
theory. The gradual change in behavior characteristics with increasing confining pressure from
those typical of dense sand to those typical of loose sand is not accounted for in the previously
developed theory.

Incorporation of additional aspects of the real behavior of cohesionless soils in the stress-
strain theory requires further development. The modified theory presented herein is based on
the behavior observed in isotropic compression and triaxial compression tests on three different
cohesionless soils, each tested at two different densities. All aspects of soil behavior included in
the previous theory are retained, and the previous theory is merely a special case (i.e. for
straight failure envelopes) which is contained within the framework of the new theory.

The accuracy of the theory presented here is evaluated by comparing predicted and
measured strains for a number of laboratory test conditions. Thus, it is demonstrated that the
theory can accurately predict soil behavior in triaxial tests over a range of confining pressures
in which the maximum stress ratio decreases (curved failure envelope) and the volume change
behavior becomes compressive with increasing confining pressure. The post-peak behavior is

Walso correctly modeled in the range of confining pressures used in the tests. The predicted and
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the measured behavior for proportional loading is compared, and “‘at rest” loading conditions
can be calculated with good accuracy. Finally, pore pressures in undrained tests are predicted,
and since stress-path dependency can be handled by the theory[4], most aspects of undrained
behavior can be accounted for by the new theory.

2. BASIC BEHAVIOR OF COHESIONLESS SOILS

The development of the new theory is based on a consistent pattern of behavior observed
from tests on three different cohesionless soils: Sacramento River Sand[5], Crushed Napa
Basalt[6], and Painted Rock Material{7]. Each of the soils were tested at two different relative
densities. These three soils had quite different characteristics in terms of composition, grain
shape, grain size, and maximum and minimum void ratios. The diagrams used to illustrate the
developments presented here refer to loose Sacramento River Sand (initial void ratio = 0.87,
relative density = 38%).

2.1 Types of strain

For the purpose of modeling the stress-strain behavior of soils by an elasto-plastic theory,
the total strain increments, {de;}, are divided into an elastic component, {dej}, a plastic collapse
component, {dei}, and a plastic expansive component, {def}, such that

{de;;} = {def} + {dei} + {de}. (1)

These strain components are calculated separately, the elastic strains by Hooke’s law, the
plastic collapse strains by a plastic stress-strain theory involving a cap-type yield surface, and
the plastic expansive strains by a stress-strain theory which involves a conical yield surface
with apex at the origin of the stress space.

Figure 1 illustrates schematically the parts of the total strain which for the present purpose
are considered to be elastic, plastic collapse, and plastic expansive components of strain in a
triaxial compression test. Typical observed variations of stress difference (01— 03), and
volumetric strain, €, with axial strain, €, are shown in this figure for a test performed with
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Fig. 1. Schematic illustration of elastic, plastic collapse and plastic expansive strain components in drained
triaxial compression test.
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constant value of the confining pressure, as. Both elastic (recoverable) and plastic (irrecover-
able) deformations occur from the beginning of loading of a cohesionless soil, the stress-strain
relationship is nonlinear, and a decrease in strength follows peak failure. The volumetric strain
is initially compressive and this behavior may be followed by expansion (as shown in Fig. 1) or
by continued compression. The plastic strains are initially smaller than the elastic strains, but at
higher values of stress difference the plastic strains dominate the elastic strains. The nature of
the elastic, plastic collapse, and plastic expansive strain components and the methods of
calculation for these components are discussed in the following.

3. ELASTIC STRAINS

The elastic strain increments, which are recoverable upon unloading, are calculated from
Hooke’s law, using the unloading-reloading modulus defined as[8]:

Eur = Kur *Pa (2) (2)
Da

The dimensionless, constant value of the modulus number K., and the exponent n are
determined from triaxial compression tests performed with various values of the confining
pressure, os. In equation (2) p, is atmospheric pressure expressed in the same units as E,, and
as3.

The value of Poisson’s ratio has often been found to be close to 0.2 for the elastic parts of
unloading-reloading stress-paths[8-10]. This value is therefore used in the following cal-
culations.

4, PLASTIC COLLAPSE STRAINS

Part of the strains occurring during isotropic compression are irrecoverable, i.e. they are
plastic in nature. Thus, a partial collapse of the grain structure resulting in a volumetric
compression is caused by increasing isotropic stresses. This is illustrated in Fig. 2 for loose
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Fig. 2. Isotropic compression of loose Sacramento River Sand with primary loading, unloading and reloading
branches.
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Sacramento River Sand. The elastic strains which are recoverable upon unloading can be
calculated with good accuracy from Hooke’s law as shown in this figure. The collapse strains
can therefore be separated from the total strains observed in these tests by subtracting the
elastic strains.

It is reasonable to believe that plastic collapse strains are produced by any increase in mean
normal stress, and that within this mode of behavior, plastic shear strains will be associated
with shear stresses acting on the soil. However, it is difficult to separate the collapse strains
from the plastic expansive strains for a general stress increment (not along the hydrostatic axis),
because both types of strain occur simultaneously for such a stress increment. It is therefore
necessary to find the magnitudes of the collapse strains from isotropic compression, the only
loading condition which does not produce plastic expansive strains.

4.1 Yield criterion.

In order to model the described behavior, a yield criterion which forms a cap on the open
end of the conical yield surface is used. Figure 3(a) shows the position of the yield cap.
Cap-type yield criteria have been proposed in order to account for the plastic collapse strains
occurring during isotropic compression{11-14]. Very often such cap yield surfaces have been
continued smoothly into a conically shaped surface in such a way that the normality condition
from theory of perfect plasticity[15, 16] could be employed over the entire surface[11, 12]. Two
yield surfaces, a cone and a cap, have been used more recently[13, 14].

In the present development a collapse yield criterion which forms a sphere with center in
the origin of the principal stress space is used in connection with the conical yield surface. The
equation for the yield cap can be written in terms of the first and the second stress invariants, I,
and b, as follows:

fe=L*+2-1, 3)

As the value of f. increases beyond its current value, the soil work-hardens and collapse strains
are produced. It should be noted that yielding according to equation (3) does not result in
eventual failure. Failure is controlled entirely by the conical yield surface.

4.2 Plastic potential and flow rule

Isotropic compression of an isotropic soil results in equal linear strains in the three principal
directions. Thus, for this condition the strain increment vector should be pointed in the
direction outward from the origin and coincide with the hydrostatic axis, as shown in Fig. 3(a).
For this condition to be fulfilled the plastic potential function, g, must be identical to the yield
criterion, f.. The flow rule is then derived from:

. df ¢
Aeii=AAc - / (4)
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between plastic collapse work, W,, and the value of f, for loose Sacramento River Sand.
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where AA. is a proportionality constant. The derivatives of f. with respect to the normal
stresses become:

=20y (5a)

and similar expressions are obtained for the other normal stresses by interchanging the indices
on the stresses. The derivatives of f. with respect to the shear stresses become:

=27 (5b)

and similar expressions are obtained for the other shear stresses by interchanging the indices on
the stresses.

4.3 Work-hardening law

The collapse stress-strain relationship involves one parameter, AA., which determines the
absolute magnitude of the strain increment. The value of AA: can be determined from the
work-hardening law.

The magnitudes of the strain increments can be calculated using an experimentally deter-
mined relation between the total plastic work required to produce collapse strains, W,, and the
degree of hardening expressed by f. (from eqn 3):

W.= Fc(fC) 6)

where F. is a monotonically increasing, positive function. It is assumed that the relation
expressed in eqn (6) is unique, and this implies that the work-hardening relationship is
independent of the stress-path.

The relationship expressed in eqn (6) can be determined empirically from an isotropic
compression test. The plastic work is calculated from

W. = [ (o "1dei 0
which for isotropic compression reduces to
W= f a3 de’ 8)

where a3 - de,” is the plastic work done per unit volume during the volumetric strain increment
de,.
The value of f. reduces for isotropic compression to

fo=30 )

The diagram in Fig. 3(b) shows the relationship between W, and f. plotted on log-log scales
for loose Sacremento River Sand. This relationship can be described with good accuracy as a
straight line for which the following expression is used

We=C"pa- (l%)p. (10)

a

The dimensionless, constant value of the collapse modulus C is determined at fdps:=1and the
collapse exponent p is the slope of the straight line as indicated in Fig. 3(b). In eqn (10) p, is
atmospheric pressure expressed in the same units as W, and V7.

Noting that the yield criterion in eqn (3) is a homogeneous function of degree 2 and following

§SVol. 13 No. 11—B
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the development outlined in[17], the proportionality constant AA. in eqn (4) can be written as:

_dW.
-3 %

AA. (1)

where dW, is the increment in plastic collapse work over the increment df.(=0). The value of
dW. may be determined from the derivative of W, (given in eqn 10) with regard to (f./p.)):

2, 1-p

AW.=C p - pa- (”f—) - d(fdpdd. (12)

The plastic collapse stress-strain relations are then determined from eqns (4), (5), (11) and
(12).

5. PLASTIC EXPANSIVE STRAINS

The component of strain which has been referred to as plastic and expansive is shown in
Fig. 1. Experimental evidence suggests, however, that some compression occurs due to shear
stresses at small stress levels before the plastic strains become expansive at higher stress
levels[18, 19]. Although compression is included, the component of strain dealt with in this
section will be referred to as plastic expansive strain.

5.1 Failure criterion—failure surface

The failure surface is curved for most cohesionless soils, i.e. the friction angle decreases
with increasing magnitude of the mean normal stress. In order to include this curvature in the
failure criterion, data from triaxial compression tests on many different cohesionless soils were
studied. A suitable relationship between the stresses at failure was developed in terms of the
first and the third stress invariants, I, and I:

fo =(IP1B=27) - (h/pa)" (13a)
f> = m at failure . (13b)

The values of 1; and m in eqn (13) can be determined by plotting (I,*/5~27) vs (pa/I)) at failure
in a log-log diagram, as shown in Fig. 4 for loose Sacramento River Sand. On this diagram 7, is
the intercept with (po/I;) =1 and m is the slope of the straight line.

In principal stress space the failure surface defined by eqn (13) is shaped like an asymmetric
bullet with the pointed apex at the origin of the stress space as shown in Fig. 5(a). The apex angle
increases with the value of 7, and the curvature of the failure surface increases with the value of
m. For m = 0 the failure surface is straight and the expression in eqn (13) becomes identical to that
used in the previous theory(l, 2). Figure 5(b) shows typical cross-sections for given values of
I)/I; and for constant value of I;. These cross-sections are exactly the same as for the previous
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Fig. 4. Determination of the values of 0, and m involved in failure criterion for loose Sacramento River Sand.
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Fig. 5. Characteristics of proposed failure and yield surfaces shown in principal stress space. (a) Traces of
failure and yield surfaces in triaxial plane. (b) Traces of failure and yield surfaces in octahedral plane.

theory, and it has been shown that they model the experimentally determined three-dimensional
strengths of sands with good accuracy(1, 2].

The failure surface given in eqn (13) is always concave towards the hydrostatic axis.
However, the real failure surfaces for cohesionless soils open up and become conical at very
high values of the mean normal stress[5]. The failure criterion is therefore only valid in the
range of mean normal stresses where the failure surface is concave towards the hydrostatic
axis. This range of mean normal stresses is dependent on the integrity of the soil grains, and
only when crushing becomes an important factor in the soil behavior does the real failure
surface deviate from that expressed in eqn (13). However, for most soils the stresses necessary
to produce appreciable crushing are of a magnitude to be found, e.g. at the bottom of very tall
earth dams.

5.2 Yield surface-yield criterion

The vield surface, which defines the boundary between states of stress where both elastic
and plastic deformations occur and those where only elastic deformations occur, is assumed to
have the same general shape as the failure surface and to be expressible by eqn (13a). During
continued loading the yield surface expands symmetrically around the hydrostatic axis as the
value of f, increases, such as shown in the insert in Fig. 5. The ultimate position of the yield
surface for which f, = 5, is the failure surface for the sand. During unloading and neutral
loading, the yield surface remains in the same position corresponding to the highest value of f,
previously applied to the sand. Thus, the soil is assumed to harden isotropically.

5.3 Plastic potential and flow rule

It is often assumed in plasticity theory that the plastic potential and the yield criterion are
identical. This assumption was.- employed for the behavior of the plastic collapse strains.
However, it has been found that this assumption is not accurate for the plastic expansive strain
component(3, 4, 20, 21]. The plastic potential function incorporated in the theory described
herein is expressed in a form similar to the failure criterion:

m

g =1~ (27+ - (’;—) ) ¥ (14)

1

where 7 is a constant for given values of f, and o3. The plastic potential function describes a
series of surfaces which are normal to the plastic strain increment directions. The selection of
the function in eqn (14) was based on observations made during this and previous studies [1-4]
of the directions of plastic strain increments determined from experiments.

The plastic potential surfaces given by eqn (14) are shaped like asymmetric bullets with
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their pointed apices at the origin of the stress space. Their traces in octahedral planes are the
same as those for the yield surfaces (Fig. 5b). Their traces in triaxial planes resemble those of
the yield surface (Fig. 5a), but their apex angles are greater, they are more curved, they cut the
yield surfaces, and they become asymptotic to the hydrostatic axis at a greater rate than the
yield surfaces.

The relation between stress and strain is derived according to the following expression:

J
AL=Ad, 2 (15)

30’,‘ 1]

which expresses that the strain increments are proportional to the derivatives of the plastic
potential. The derivatives of g, with respect to the normal stresses become:

ezt (em () ) (o o) omeme (7))
— =31 -{27+ o f— . O, Ty )+ B =
20 1 T+ m 1, gy 0, Ty 2 m- I

and similar expressions are obtained for the other normal stresses by interchanging the indices
on the stresses. The derivatives of g, with respect to the shear stresses become:
dgp "

—= (27+ - (—&> ) (o Ty T Txy t Tax) (16b)
3Tyz I|

and similar expressions are obtained for the other shear stresses by interchanging the indices on
the stresses.

A significant feature of the stress-strain relations is that they model the coupling between
shear stresses and normal strains (eqns 15 and 16a) and between normal stresses and shear
strains (eqns 15 and 16b). These coupling effects are consistent with observed soil behavior.

Two parameters are involved in the stress-strain relationship: AA, and n,. The value of AA,
determines the magnitude of the plastic strain increment, and the value of 7, determines the
directions of the strain increments in planes perpendicular to the octahedral plane.

The value of 7; may be determined from the directions of the plastic strain increments in
the triaxial plane, as shown for the similar strain increment directions in connection with the
previous theory[l,2]. n; can be determined by expressing:

AEJP
A€1‘7

Vﬂ_

a7

Substituting expressions for Ae)” and Aey” from eqns (15) and (16a) into eqn (17) and solving
for n» gives:

n= 31+ IP-2T05 (0140 o) (18)

(%)m . [0’3 (o + 0P - 03)—%]

It is assumed that the values of 2 calculated from the triaxial compression tests at any
stress level are the correct values to use for prediction of the relative magnitudes of the strain
increments at the same stress levels in tests with any combination of the three principal
stresses. This assumption was shown to result in good agreement between observed behavior
and the predictions of the previous theory[1,2].

Values of 7, were calculated from eqn (18) and plotted as a function of f, given by eqn
(13a). In order to determine the ratio v* = — Aes’/Ae,” from the triaxial compression tests, the
plastic expansive strain increments were calculated by subtracting the elastic and the plastic
collapse strains from the total strains according to eqn (1). The variation of 5, with f, and o3 is
shown in Fig. 6(a) for loose Sacramento River Sand. It may be seen from this figure that 7, is
very nearly linearly related to f, for constant values of o3. The slopes of the straight lines are
the same, but the intercept of the lines with the n»-axis vary with 5. The variation of »; can be
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Fig. 6. (a) Variation of n, with f, and . (b) Variation of intercepts with o for loose Sacramento River Sand.

modeled by a simple expression of the following type:

m=S-f,+R- %+t (19)

where S is the slope of the straight lines, and the last two terms model the variation of the
intercept. R and t are constants to be determined as shown on the diagram in Fig. 6(b).
Considerations of the strain increment ratios suggest that the value of 7, should be zero for
isotropic stress conditions where the value of f, is also zero. However, the plastic strains
which occur for very small values of f, are negligible, and the fact that the straight lines, which
model the variations of 72, do not go through the origin is therefore not of practical importance.
Negative values of 7 correspond to plastic volumetric strains which are compressive,
whereas positive values of 12 correspond to plastic expansive strains. Figure 6(a) shows that
loose Sacremento River Sand compresses slightly at small stress levels before expansive strains
are produced at high stress levels. The diagram indicates that the initial compression is most
pronounced for high confining pressures, which is in accordance with observed soil behavior.
The experimental data show that the values of %, are smaller than f,, thus indicating that the
plastic potential surface and the yield surface do not coincide. If 5, was equal to f, at all stress
levels, the plastic potential function in eqn (14) would be identical to the yield function in eqn
(13a) and the normality criterion would apply to the soil. However, Fig. 6(a) indicates that the
chosen yield criterion cannot substitute as the plastic potential function for cohesionless soil.

5.4 Work-hardening and -softening law

The magnitudes of the strain increments caused by a given stress increment can be
calculated using an experimentally determined relation between plastic work and stress level.
An isotropic work-hardening and -softening law is employed, and this implies that the yield
surface expands or contracts uniformly and that the degree of hardening or softening is
independent of stress-path. Thus, according to the isotropic hardening hypothesis, there exists a
unique relationship between the total plastic work W, and the degree of hardening or softening
expressed by the value of f, (given by eqn 13a):

W, = Fy(f,) 20)

where F, is a monotonically increasing or decreasing, positive function.
The relationship expressed in eqn (20) can be determined empirically by calculating the

plastic work and plotting its variation with f,. The plastic work at each stage of the triaxial
compression tests was calculated from

W, = [ {ou)"(de} Q1)

in whi_ch {m;}.r{de‘f,’-} is the plastic work done per unit volume during the strain increment {def).
The diagram in Fig. 7 shows the variation of the total plastic work with the value of f» and the
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Fig. 7. Variation of total plastic work with f, and o for loose Sacramento River Sand.

confining pressure o3. The fact that very small or negligible plastic strains are produced at small
stress levels (as shown schematically in Fig. 1) is reflected in the work-hardening relationships
which have vertical tangents at the origin. Increasing increments of plastic strains are produced
with increasing stress levels. Figure 7 also demonstrates a significant influence of the confining
pressure on the amount of plastic work necessary to produce plastic strains at high stress
levels. The peaks of the relationships all occur at f, = m;, but the amount of plastic work
required to reach the peaks increases with increasing confining pressure. The decreases in the
values of f, with further work input also follow a consistent pattern which depends on o3, as
shown in Figure 7. This post-peak behavior is referred to as work-softening or strain softening.

In order to be able to handle both work-hardening and work-softening, it is necessary to
consider the function F, in eqn (20) first as monotonically increasing and then as monotonically
decreasing. Therefore, the value of W, at the peak stress level (i.e. at peak failure) is used to
distinguish between the parts of the relation between W, and f, where F, is increasing and the
parts where F, is decreasing.

The plastic potential function for the plastic expansive strains (eqn 14) is not a homogeneous
function. However, proceeding as in [17], the operations indicated in the expression
aii - (3gy/ daj) result in

Uij.a;g’l=3.gp+m-n2~(&> '13. (22)
a0 1

The value of the proportionality constant AA, in eqn (15) can therefore be written as
aw,

Ar, = G 23
3'gp+M'n2-(Tf) e

where g, is the plastic potential function and dW, is the increment in plastic work due to an
increase in the stress level df;.

The increment of plastic work per volume, dW,, can be determined from the relations
between W, and f, shown in Fig. 7. These rlations can be approximated by exponential
functions for which the following expression is used:

liq
fp:a.e~b<wp.(%) , q>0 24

where the parameters a, b and g are constants for a given value of the confining pressure .
The expression in eqn (24) models several aspects of the work-hardening and work-
softening behavior shown in Fig. 7: (1) The initial tangent is vertical, and the expression
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therefore models the soil behavior at the origin, as discussed above; (2) the value of f,
increases with W, until a peak value is reached; and (3) f, decreases with further increase in
W, in a way similar to that exhibited by the soil behavior. The only limitiation of the
exponential expression in eqn (24) is that the value of f, decreases asymptotically to zero for
very large values of W,. Thus, it implies that the residual strength of the soil is zero. However,
eqn (24) models the soil behavior very accurately within strain magnitudes of interest, and only
for very large strains does it deviate from the observed soil behavior.

The values of g, a and b in eqn (24) can be determined for a given value of the confining
pressure according to the following expressions:

log (—————“v/":,”“k)— (1 - “‘:/"w ) ‘loge
q= p60 ppeak (25)

log (ﬁ(—:—o)

where (W, foeo) and (Wppear, 71) are two sets of corresponding values on a curve in Fig. 7 and
e is the base for natural logarithms. Any two points on a curve could in principle be used for
determination of g, but the best overall curvefit is obtained when the peak point of the curve
and the point corresponding to 60% of 7, on the work-hardening part of the curve are used.

lq

a=,,,.(‘;""') (26)
Pppeak
and
p=—Ll @
q* Wppeak

where ¢ is determined from eqn (25), e is the base for natural logarithms and Wp,.a is the value
of W, at the peak point.

The variation of W, with the confining pressure g3 is shown on the diagram in Fig. 8(a),
and this variation can be approximated by a straight line in the log-log diagram, such that

t
przak = P * pa * (%) (28)

a

where P and | are constants to be determined as shown on Fig. 8(a) and p, is atmospheric
pressure expressed in the same units as Wy and o3

The variation of g with confining pressure o3 is shown on the diagram in Fig. 8(b), and this
variation can best be modeled by a simple expression as follows:

g=a+p-2 @9)

10

(Wopeak/Pa)
I

03—

0.1
03

(o3/p,) {a3/pa)

Fig. 8. (a) Variation of W, with confining pressure o, and (b) variation of q with confining pressure o, for
loose Sacramento River Sand.
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where a and B are, respectively, the intercept and the slope of the straight line shown on Fig.
8(b).

The solid lines on Fig. 7 have been drawn on the basis of the relationship in eqn (24) and the
values of a, b, and g determined from eqns (26)-(29). It may be seen that the expression in eqn
(24) models all aspects of the observed soil behavior with good accuracy for all values of the
confining pressure .

Based on the expression in eqn (24) the increment in plastic work can be expressed as
follows:

e U
» (q-le_b)

where q is given by eqn (29), b is given by eqns (27) and (28), f, is the current value of the
stress level, and df, is the difference in f, between two successive stress states.

It should be noted that it is important to distinguish between the work-hardening and the
work-softening parts of the W, — f, relationship, because two values of W, corresponds to the
same value of f,. This is best done by comparing the current value of W, with W, calculated
from eqn (28). Thus, for W, < Wppea the soil is work-hardening and for W, > W,,ca the soil is
work-softening. For W, = W,,,ca the value of dW, in eqn (30) is infinite. For all other conditions
the value of dW, is positive and definite. The calculations presented in Section 7 were made on the
basis of total stresses rather than stress increments, and the condition W, = W,,..x could therefore
easily be avoided with no loss in accuracy.

aw,

6. SUMMARY OF STRESS-STRAIN PARAMETERS

The values of the parameters included in the elasto-plastic stress-strain theory presented
above can be evaluated using only the results of isotropic compression and conventional
drained triaxial compression tests. The values of the parameters were determined from the
results of tests on Sacramento River Sand, Crushed Napa Basalt, and Painted Rock Material,
each tested at two different relative densities. The parameters are listed in Table 1. It should be
noted that none of these parameters have dimensions. All dimensions are controiled, where
appropriate, by the dimension of the atmospheric pressure, p,, as e.g. in eqn (28). The
parameters in Table 1 may be used to calculate strains in the respective soils for any
combination of stresses and changes in stress during primary loading, neutral loading, unload-
ing, and reloading.

Table 1. Summary of soil parameters for Sacramento River Sand, crushed Napa basalt, and painted rock material

Soil ] 1
Sacramento River Sand | Crushed Napa Basalt]| Painted Rock Material Strain
Parameter Component
~ — |
Relative Demsity, D (%) 100 38 ( 100 70 100 70 §
Void Ratio, e 0.61 0.87 I 0.53 0.66 0.40 0.48 i
N | . i
!
Modulus No., K 1680 960 1520 900 1580 730 | Elastic
Exponent, n ¥ 0.57 0.57 0.34 0.38 0.49 0.66
Poisson's Ratio, v 0.20 0.20 0.20 0.20 0.20 0.20
— —— ey
Collapse Modulus, C 0.00023 0.00028 0.00075  0.00120 0.00100  0.00140 Plastic
Collapse Exponent, p 0.86 0.9%4 0.74 0.775 0.63 0.644 Collapse
. .
Yield Const., Ny 80 28 280 130 101 67 ;
Yield Exponent, m 0.23 0.093 0.423 0.30 0.21 0.16
Pl. Potent. Comst., R -2.95 -1.00 -5.90 -3.03 ~2.34 ~2.21
P1l. Potent. Const., S 0.44 0.43 0.41 0.40 0. 44 0. 44 Plastic
P1l. Potent. Const., t 8.45 0.00 0.00 0.00 2.80 3.10 Expansive
Work-Hard. Const., o 3.00 3.00 2.22 2.35 3.45 3.28 !
Work-Hard. Const., 8 0.060 -0.076 -0.023 -0.046 -0.033 -0.029 i
Work-Hard. Const., P 0.12 0.24 0.50 0.35 0.12 0.08C |
Work-Hard. Exponent, £ 1.16 1.25 1.09 1.23 1.38 1.61
S O SO |
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7. PREDICTION OF SOIL BEHAVIOR FOR VARIOUS LOADING CONDITIONS

To test the abilities of the elasto-plastic stress-strain theory developed in the previous
sections, predictions of this theory are compared to measured soil behavior for a variety of
loading conditions. In addition to results of drained triaxial compression tests, experimental
data are available for proportional loading and undrained compression on Sacramento River
Sand and for “at rest” loading conditions on Crushed Napa Basalt and Painted Rock Material.
These types of loading conditions are of special interest because they were either predicted
with only moderate accuracy or they were not compared to the predictions of the previous
theory. Appropriate computer programs were developed to perform the necessary calculations
involved in using the theory for prediction of the various loading conditions. Only the soil
parameters listed in Table 1 are used for all predictions.

7.1 Drained triaxial compression tests

The relation between stress difference, volumetric strain, and axial strain for drained
triaxial compression tests were determined by specifying discrete stress points for such tests
and calculating the strain increments from the theory. The comparison between measured and
calculated stress-strain and volume change behavior for loose and dense Sacramento River
Sand is shown in Fig. 9. The points in these figures represent the measured soil behavior and the
solid lines represent the calculations from the theory.

Most aspects of the soil behavior are calculated with good accuracy using the stress-strain
theory. Notably, the decrease in maximum stress ratio, o1/ o3, with increasing confining pressure
is well accounted for, and the gradual variation of the volumetric strain behavior, from being
expansive at small confining pressures to being compressive at high confining pressures, is also
modeled correctly by the theory. The predicted post-peak stress-strain curves are in good
agreement with those measured within the range of strains considered.

7.2 Proportional loading

Proportional loading is defined as a loading condition where the ratio between the principal
stresses is held constant while the stress magnitudes are increased or decreased. Tests with
proportional loading and decreasing stresses result in only elastic strains[4, 22, 23]. Proportional
loading with increasing stresses results in both elastic and plastic strains, and the measured

5 T T T
{a)

| a3 =094 ka/em?

L
5 10 15 20 25
eqi%} €9{%)

Fig.9. Comparison between measured and predicted stress-strain and volume change behavior for (a) foose
and (b) dense Sacramento River Sand in drained triaxial compression tests.
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axial and volumetric strains generally become larger with increasing stress ratio[4, 9,22, 23].

Curved yield surfaces are used for the plastic expansive strains, and both yield surfaces, the
cone and the cap, are therefore pushed out when the stresses are increased proportionally.
Thus, both elastic and plastic strains will occur for proportional loading with increasing
stresses. Only elastic strains are predicted by the theory for conditions of constant stress ratio
and decreasing stresses, which is in accordance with observed soil behavior[4].

Prediction of stress-strain relations for proportional loading were performed by specifying
discrete stress points and calculating the strain increments from the theory. Figure 10 shows
observed and predicted strains for proportional loading conditions with increasing stresses on
loose and dense Sacramento River Sand. Stress ratios of 1.00, 1.77, 2.20 and 2.80 were used in
the tests. Figure 10(a) shows that the axial strains for the loose sand are calculated to be
somewhat higher (solid lines) than those measured (points). However, the volumetric strains are
fairly accurately predicted for all values of the stress ratio. Figure 10(b) shows that both axial
and volumetric strains for the dense sand are predicted with good accuracy for all stress ratios.
The volumetric compression of the dense sand is quite similar in magnitude for all stress ratios
used, whereas the loose sand shows increasing volumetric compression with increasing stress
ratio. This difference in behavior is predicted by the theory.

7.3 At rest” loading conditions
Tests performed on specimens under conditions of zero lateral strain are referred to as “at
rest” tests or K,-tests, where K, is the coefficient of earth pressure at rest which may be

defined as{24]:
K, = @5'—3) 31)
01/ ex=0

where Aos and Aoy are the increments in the principal stresses such that no lateral strain
occurs. For the case of increasing stresses both plastic and elastic strains are produced,
whereas mainly elastic strains occur in the specimen for the case of decreasing stresses[24].
For increasing stresses the plastic and the elastic strains cancel each other out such that the
total lateral strain is zero:

Aer’ + A6y’ +Ae’ =0 (32)

where Ae’, Ae’, and Ae,” refer to lateral increments in elastic, plastic collapse, and plastic
expansive strains.

The soil behavior during K,-tests was calculated by specifying the vertical stresses and
using a simple iteration procedure to find the horizontal stresses that would result in lateral
strains fulfilling eqn (32) within specified narrow limits. The results of a K,-test on dense
Crushed Napa Basalt (relative density = 100%) are shown on Fig. 11. The predicted behavior

(b)
O ~gqf03=1.00
A ~oyfaz =177

v
o4/o3=2.80

0 ~o0q/03=220

g v ~04/03=2.80 2.20
by 3 177
1.00
o3lkg/em?)
3lkg/em
= =
::> 01/03

= 2.80
( 3 v
Fig. 10. Comparison of measured and predicted strains for proportiqnal loading with increasing stresses on
(a) loose and (b) dense Sacramento River Sand.
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Fig. 11. Comparison of measured and predicted (a) stresses and (b) stress-strain relationship in K,-test on
dense crushed Napa basalt.

(solid lines) is seen to correspond very well to the measured behavior (points) for increasing
stresses. The value of K, calculated from eqn (3) is not constant as is often assumed. K,
increases with increasing stresses, and this aspect of the soil behavior is accurately predicted by
the theory. No test results were available for decreasing stresses, but tests by others[25-27]
indicate that they follow a pattern shown by the lines denoted “Decreasing Stresses.” The
states of stress and the axial strains indicated by these lines are actually the ones predicted by
the theory. The value of K, for decreasing stresses may be calculated from elasticity theory
and corresponds to K, = »/(1 - »), where » =0.2 is Poisson’s ratio.

7.4 Undrained triaxial compression tests
The prediction of pore pressures and soil behavior in undrained tests on saturated speci-
mens is based on the condition that no volume change occurs in the soil for any load increment:

Aef + A6, +Ae” =0 (33)

where Ae.’, Ae,’ and Ae,” are the volumetric strain components corresponding to the three
types of strain occurring in the soil. The calculation of pore pressures was performed by
specifying the chamber pressure and discrete values of effective stress ratio, o'i/o3, or stress
difference, (o — a3). The effective confining pressure producing volumetric strains which would
satisfy eqn (33) within specified limits was found by iteration. The pore pressure was then
calculated as the difference between the chamber pressure and the required effective confining
pressure. It should be noted that calculation of pore pressures and soil behavior using the
restraint in eqn (33) is based on the fact that a balance can be found between the compressive
volumetric strains, Ae,” and Ae,’, and the expansive volumetric strains, Ae,’, such that their sum
is zero at each stress level.

The results of isotropically consolidated undrained triaxial compression tests were available
for loose and dense Sacramento River Sand[28}, and these results were used for comparison
with the predictions of the theory. Two examples which illustrate the capabilities of the theory
are shown in Fig. 12. The test on loose sand was performed with an initial effective confining
pressure of 12.65 kg/cm?, Figure 12(a) shows that the variation of both the effective stress ratio,
ailal, and the pore pressure, u, with axial strain is correctly predicted. The initial effective
confining pressure for the test on dense sand was 10.50 kg/cm’ as shown in Fig. 12(b). After the
initial increase, the pore pressure decreased to —0.9 kg/cm® at which cavitation of the pore
water was observed. After cavitation was initiated, the specimen expanded as in a conventional
drained test. The fact that cavitation occurred at —0.9 kg/cm’® was included in the calculations.
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Fig. 12. Comparison of measured and predicted stress-strain, pore pressure, and volume change behavior
for undrained tests on (a) loose and (b) dense Sacramento River Sand,

The observed stress-strain, pore pressure, and volume change behavior in the undrained test on
dense sand is also predicted accurately by the theory presented herein.

8. SUMMARY AND CONCLUSIONS

An elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces has
been developed on the basis of the soil behavior observed in isotropic compression and triaxial
compression tests performed on three different cohesionless soils, each tested at two different
relative densities. This development constitutes an expansion of a previously presented
stress-strain model such that additional aspects of soil behavior could be incorporated in the
theoretical framework. The yield criterion, the plastic potential, and the work-hardening law
included in the constitutive law presented here have all been modified relative to those used in
the previous theory. In addition, work-softening is included in the new theory, and the
irrecoverable strains which occur during isotropic compression are modeled by a separate
plasticity theory which involves a cap-type yield surface.

The accuracy of the modified theory has been evaluated by comparing predicted and
measured strains for several types of laboratory tests performed on loose and dense sand.
Thus, it is demonstrated that the modified theory can accurately predict soil behavior in triaxial
tests over a range of confining pressures in which the maximum stress ratio decreases (curved
failure envelope) and the volumetric strain behavior gradually changes from expansive to
compressive with increasing confining pressure. The post-peak behavior is also correctly
modeled in the range of confining pressures employed in the tests. The predicted behavior for
proportional loading with increasing stresses is compared with the measured behavior for one
of the cohesionless soils in loose and dense states, and stresses as well as strains occurring
under K,-conditions can be calculated with good accuracy. Finally, the stress-strain and pore
pressure behavior observed in undrained tests on both loose and dense sand are accurately
predicted.

None of the aspects of soil behavior included in the previous theory have been sacrificed in
the elasto-plastic theary presented here. The previous theory is merely a special case included
in the modified theory, i.e. for straight failure envelopes the modified theory without the cap is
similar to the previous theory. Therefore, the modified theory is applicable to general three-
dimensional stress conditions, but the fourteen soil parameters required to characterize the soil
behavior can be derived entirely from the results of isotropic compression and conventional
drained triaxial compression tests.

Acknowledgements—The original test data for Sacramento River Sand were kindly provided by K. L. Lee of the University of
California, Los Angeles. The research presented here was supported by the National Science Foundation under Engineering
Research Initiation Grant No. GK 37445,



13,
14,

15.
. D. C. Drucker, A more fundamental approach to stress-strain relations. ASME: 1st Nat. Cong. Appl. Mech., p. 487

17.
18.

19.
20.

21
2.

23.
24,
25.
26.

27.
28.

Elasto-plastic stress-strain theory 1035

REFERENCES

P. V. Lade, The stress-strain and strength characteristics of cohesionless soils. Ph.D. Dissertation, University of
California, Berkeley (1972). ‘

. P. V. Lade and J. M. Duncan, Elastoplastic stress-strain theory for cohesionless soil. ASCE: J. Geotech. Eng. Div. 101,

1037 (1975).

. P. V. Lade and J. M. Duncan, Cubical triaxial tests on cohesionless soil. ASCE: J. Geotech. Eng. Div. 99, 793 (1973).
. P. V. Lade and J. M. Duncan, Stress-path dependent behavior of cohesionless soil. ASCE: J. Geotech. Eng. Div. 102,

51 (1976).

. K. L. Lee and H. B. Seed, Drained strength characteristics of sands. ASCE: J. Soil Mech. Found. Div. 93, 17 (1967).
. M. M. Al-Hussaini, Drained plane strain and triaxial compression tests on crushed Napa basalt, USAE WES, Miss.,

Report S-71-2, No. 2, June 1971.

. M. M. Al-Hussaini, Plane strain and triaxial compression tests on Painted Rock Dam material, USAE WES, Miss.,

Report S-71-2, No. 3, September 1972.

. J. M. Duncan and C.-Y. Chang, Nonlinear analysis of stress and strain in soils. ASCE: J. Soil Mech. Found. Div. 96,

1629 (1970).

. 1. Holubec, Elastic behavior of cohesionless soil. ASCE: J. Soil Mech. Found Div. 94, 1215 (1968).
. C. R. Calladine, Overconsolidated clay: A microstructural view. Proc. Symp. Role of Plasticity in Soil Mechanics

(Edited by A. C. Palmer). p. 144, Cambridge University (1973).

. D. C. Drucker, R. E. Gibson and D. J. Henkel, Soil mechanics and work-hardening theories of plasticity. ASCE Trans.

122, 338 (1957).

., K. H. Roscoe and J. B. Burland, On the generalized stress-strain behavior of “wet” clay. Engineering Plasticity (Edited

by J. Heyman and F. A. Leckie), p. 535. Cambridge University (1968).

F. L. DiMaggio and I. S. Sandler, Material model for granular soils. ASCE: J. Eng. Mech. Div. 97, 935 (1971).
J.-H. Prevost and K. Hoeg, Effective stress-strain-strength model for soils. ASCE: J. Geotech. Eng. Div. 101, 259
(1975).

D. C. Drucker, Some implications of work hardening and ideal plasticity. Quart. Appl. Math. 7, 411 (1950).

(1951).

R. Hill, The Mathematical Theory of Plasticity. Oxford University Press (1950).

M. L. Silver and H. B. Seed, Volume changes in sands during cyclic loading. ASCE: J. Soil Mech. Found. Div. 97, 1171
(1971).

T. L. Youd, Compaction of sands by repeated shear straining. ASCE: J. Soil Mech. found. Div. 98, 709 (1972).

H. B. Poorooshasb, I. Holubec and A. N. Sherbourne, Yielding and flow of sand in triaxial compression: Part I. Can.
Geotech. J. 3, 179 (1966).

H.-Y. Ko and R. F. Scott, Deformation of sand in shear. ASCE: J, Soil Mech. Found. Div. 93, 283 (1967).

M. A. El-Sohby, Deformation of sands under constant stress ratios. Proc. 7th Int. Conf. Soil Mech. Found. Eng.,
Mexico City, Vol. I, 111 (1969).

P. W. Rowe, Theoretical meaning and observed values of deformation parameters for soil. Proc. Stress-Strain
Behavior of Soils (Edited by R. H. G. Parry), p. 143. Cambridge University (1971).

K. Z. Andrawes and M. A. El-Sohby, Factors affecting coeflicient of earth pressure Ky. ASCE: J. Soil Mech. Found.
Div. 99, 527 (1973).

A. W. Bishop and D. J. Henkel, The Measurement of Soil Properties in the Triaxial Test, 2nd Edn. St. Martin’s
Press (1962).

A. J. Hendron, The behavior of sand in one-dimensional compression. Ph.D. Dissertation, University of Illinois,
Urbana (1963).

E. W. Brooker and H. O. Ireland, Earth pressures at rest related to stress history. Can. Geotech. J. 2, 1 (1965).
H.B. Seed and K. L. Lee, Undrained strength characteristics of cohesionless soils. ASCE: J. Soil Mech. found. Div. 93,333
(1967). .



